Selected Answers from 8.2 and 8.3

8.2 ex I

1.  
Premise 1 (^x)(Ax&Bx)
1 ^E 2 Aa&Ba
2 &E 3 Ba
3 ^I 4 (^y)By
4.  
Premise 1 Aa>(^x)~Bx  
Assumption 2 ....what if (^x)Ax
2 ^E 3 ....then... Aa
1,3 >E 4 ....then... (^x)~Bx
4 ^E 5 ....then... ~Bb
5 ^I 6 ....then... (^y)~By
2-6 >I 7 (^x)Ax>(^y)~By  

Notice that you need to choose 'b' at line 5 to instantiate. If you choose 'a', it would not be arbitrary because 'a' occurs in the Premise of line 1.

8.2 ex II

2.  
Premise 1 (%x)Ax>Ba  
Assumption 2 ....what if Ab
2 %I 3 ....then... (%x)Ax
1,3 >E 4 ....then... Ba
2-4 >I 5 Ab>Ba  
5 ^I 6 (^x)(Ax>Ba)  
4.  
Premise 1 (^x)(Tx&Sx)
1 ^E 2 Ta&Sa
2 &E 3 Ta
3 ^I 4 (^y)Ty
2 &E 5 Sa
5 ^I 6 (^z)Sz
4,6 &I 7 (^y)Ty&(^z)Sz

8.2 ex III

1.  
Premise 1 (%x)(Tx&Lx)  
Assumption 2 ....what if Tt&Lt
2 &E 3 ....then... Tt
3 %I 4 ....then... (%y)Ty
1,2-4 %E 5 (%y)Ty  

The assumption at line 2 is a substitution instance of line 1. 't' is picked as the instantiating name; it's the temporary name to illustrate an object of the type said to exist by line 1.
3.  
Premise 1 (%x)Mxc  
Premise 2 (^x)[(%y)Myx>Tx]  
Assumption 3 ....what if Mtc
3 %I 4 ....then... (%y)Myc
1,3-4 %E 5 (%y)Myc  
2 ^E 6 (%y)Myc>Tc  
5,6 >E 7 Tc  

8.2ex IV

1.  
Premise 1 (%z)Tz  
Assumption 2 ....what if Ta
2 vI 3 ....then... Ta v Laa
3 %I 4 ....then... (%z)(Tz v Lzz)
1,2-4 %E 5 (%z)(Tz v Lzz)  
2.  
Premise 1 (%x)(Bx&Tt)  
Assumption 2 ....what if Ba&Tt
2 &E 3 ....then... Ba
3 %I 4 ....then... (%x)Bx
2 &E 5 ....then... Tt
4,5 &I 6 ....then... (%x)Bx&Tt
1,2-6 %E 7 (%x)Bx&Tt  

8.3 ex I

2.  
Assumption 1 ....what if Tba
1 R 2 ....then... Tba
1-2 >I 3 Tba>Tba  
3 ^I 4 (^x)(Txa>Txa)  
5.  
Premise 1 (%x)Bxx>Baa  
Assumption 2 ....what if Baa
2 %I 3 ....then... (%x)Bxx
2-3 >I 4 Baa>(%x)Bxx  
1,4 =I 5 (%x)Bxx=Baa  

8.3ex II

1.  
Premise 1 (%x)~Px    
Assumption 2 ....what if ~Pt  
Assumption 3 ....then... ....what if (^x)Px
3 ^E 4 ....then... ....then... Pt
2 R 5 ....then... ....then... ~Pt
3-5 ~I 6 ....then... ~(^x)Px  
1,2-6 %E 7 ~(^x)Px    
3.  
Premise 1 (%x)(%y)Gxy    
Premise 2 (^x)(^y)(Gxy>~Gyx)    
Assumption 3 ....what if (%y)Gty  
Assumption 4 ....then... ....what if Gtu
2 ^E 5 ....then... ....then... (^y)(Gty>~Gyt)
5 ^E 6 ....then... ....then... Gtu>~Gut
4,6 >E 7 ....then... ....then... ~Gut
7 %I 8 ....then... ....then... (%y)~Guy
8 %I 9 ....then... ....then... (%x)(%y)~Gxy
3,4-9 %E 10 ....then... (%x)(%y)~Gxy  
1,3-10 %E 11 (%x)(%y)~Gxy    
5.  
Premise 1 (%x)Lxx>J  
Assumption 2 ....what if Laa
2 %I 3 ....then... (%x)Lxx
1,3 >E 4 ....then... J
2-4 >I 5 Laa>J  
5 ^I 6 (^y)(Lyy>J)  

8.3ex III

1.  
Assumption 1 ....what if Ma  
Assumption 2 ....then... ....what if Ja
1 R 3 ....then... ....then... Ma
2-3 >I 4 ....then... Ja>Ma  
1-4 >I 5 Ma>(Ja>Ma)    
5 ^I 6 (^x)[Mx>(Jx>Mx)]    
2.  
Assumption 1 ....what if Gab
1-1 >I 2 Gab>Gab  
2 ^I 3 (^y)(Gay>Gay)  
3 ^I 4 (^x)(^y)(Gxy>Gxy)  
3.  
Assumption 1 ....what if (^z)(Nz>Tz)  
Assumption 2 ....then... ....what if (^z)Nz
1 ^E 3 ....then... ....then... Na>Ta
2 ^E 4 ....then... ....then... Na
3,4 >E 5 ....then... ....then... Ta
5 ^I 6 ....then... ....then... (^z)Tz
2-6 >I 7 ....then... (^z)Nz>(^z)Tz  
1-7 >I 8 (^z)(Nz>Tz)>[(^z)Nz>(^z)Tz]    
4.  
Assumption 1 ....what if ~(Ga v ~Ga)  
Assumption 2 ....then... ....what if Ga
2 vI 3 ....then... ....then... Ga v ~Ga
1 R 4 ....then... ....then... ~(Ga v ~Ga)
2-4 ~I 5 ....then... ~Ga  
5 vI 6 ....then... Ga v ~Ga  
1 R 7 ....then... ~(Ga v ~Ga)  
1-7 ~E 8 Ga v ~Ga    
8 ^I 9 (^x)(Gx v ~Gx)    

8.3ex IV

1.  
Premise 1 (^w)(Bw&Cw)
1 ^E 2 Ba&Ca
2 &E 3 Ba
3 ^I 4 (^w)Bw
2 &E 5 Ca
5 ^I 6 (^y)Cy
  7  
4,6 &I 8 (^w)Bw&(^y)Cy
~~~~ 9 ~Part II~~~~
Premise 10 (^w)Bw&(^y)Cy
10 &E 11 (^w)Bw
11 ^E 12 Ba
10 &E 13 (^y)Cy
13 ^E 14 Ca
12,14 &I 15 Ba&Ca
  16  
15 ^I 17 (^w)(Bw&Cw)
2.  
Premise 1 Na>(^x)Tx  
Assumption 2 ....what if Na
1,2 >E 3 ....then... (^x)Tx
3 ^E 4 ....then... Tb
  5    
  6    
2-4 >I 7 Na>Tb  
7 ^I 8 (^x)(Na>Tx)  
~~~~ 9 ~ Part II ~ ~~~~
Premise 10 (^x)(Na>Tx)  
Assumption 11 ....what if Na
10 ^E 12 ....then... Na>Tb
11,12 >E 13 ....then... Tb
13 ^I 14 ....then... (^x)Tx
  15    
  16    
11-14 >I 17 Na>(^x)Tx  
4.  
Premise 1 (%y)My>Ma    
Assumption 2 ....what if Mb  
2 %I 3 ....then... (%y)My  
1,3 >E 4 ....then... Ma  
  5      
  6      
2-4 >I 7 Mb>Ma    
7 ^I 8 (^y)(My>Ma)    
~~~~ 9 ~ Part II ~ ~~~~ ~~~~
Premise 10 (^y)(My>Ma)    
Assumption 11 ....what if (%y)My  
Assumption 12 ....then... ....what if Mt
10 ^E 13 ....then... ....then... Mt>Ma
12,13 >E 14 ....then... ....then... Ma
11,12-14 %E 15 ....then... Ma  
  16      
11-15 >I 17 (%y)My>Ma    

8.3ex V

1.  
Premise 1 (^x)(Ax&~Ax)
1 ^E 2 Aa&~Aa
2 &E 3 Aa
2 &E 4 ~Aa
2.  
Premise 1 (%x)(Ax&~Ax)    
Assumption 2 ....what if At&~At  
Assumption 3 ....then... ....what if ~(X&~X)
2 &E 4 ....then... ....then... At
2 &E 5 ....then... ....then... ~At
3-5 ~E 6 ....then... X&~X  
1,2-6 %E 7 X&~X    
7 &E 8 X    
7 &E 9 ~X    
3.  
Premise 1 (%x)Axv(%x)Bx    
Premise 2 ~(%y)(AyvBy)    
Assumption 3 ....what if (%x)Ax  
Assumption 4 ....then... ....what if At
4 vI 5 ....then... ....then... At v Bt
5 %I 6 ....then... ....then... (%y)(Ay v By)
3,4-6 %E 7 ....then... (%y)(Ay v By)  
3-7 >I 8 (%x)Ax>(%y)(AyvBy)    
Assumption 9 ....what if (%x)Bx  
Assumption 10 ....then... ....what if Bt
10 vI 11 ....then... ....then... At v Bt
11 %I 12 ....then... ....then... (%y)(Ay v By)
9,10-12 %E 13 ....then... (%y)(Ay v By)  
9-13 >I 14 (%x)Bx>(%y)(AyvBy)    
1,8,14 vE 15 (%y)(AyvBy)    
4.  
Premise 1 (^x)(%y)(Txy>Bx)    
Premise 2 (%y)(^x)(Tyx&~By)    
Assumption 3 ....what if (^x)(Ttx&~Bt)  
1 ^E 4 ....then... (%y)(Tty>Bt)  
Assumption 5 ....then... ....what if Ttu>Bt
3 ^E 6 ....then... ....then... Ttu&~Bt
6 &E 7 ....then... ....then... Ttu
5,7 >E 8 ....then... ....then... Bt
6 &E 9 ....then... ....then... ~Bt
8,9 &I 10 ....then... ....then... Bt&~Bt
4,5-10 %E 11 ....then... Bt&~Bt  
Assumption 12 ....then... ....what if ~(X&~X)
11 &E 13 ....then... ....then... Bt
11 &E 14 ....then... ....then... ~Bt
12-14 ~E 15 ....then... X&~X  
2,3-15 %E 16 X&~X    
16 &E 17 X    
16 &E 18 ~X    
8.3ex VI

1.  
Premise 1 ~(^x)Ax    
Assumption 2 ....what if ~(%x)~Ax  
Assumption 3 ....then... ....what if ~Aa
3 %I 4 ....then... ....then... (%x)~Ax
2 R 5 ....then... ....then... ~(%x)~Ax
3-5 ~E 6 ....then... Aa  
6 ^I 7 ....then... (^x)Ax  
1 R 8 ....then... ~(^x)Ax  
2-8 ~E 9 (%x)~Ax    
2.   See 8.3ex II 1.
3.  
Premise 1 ~(%x)(Ax&Bx)    
Assumption 2 ....what if Aa  
Assumption 3 ....then... ....what if Ba
2,3 &I 4 ....then... ....then... Aa&Ba
4 %I 5 ....then... ....then... (%x)(Ax&Bx)
1 R 6 ....then... ....then... ~(%x)(Ax&Bx)
3-6 ~I 7 ....then... ~Ba  
2-7 >I 8 Aa>~Ba    
8 ^I 9 (^x)(Ax>~Bx)    
4.  
Here's problem 4 completed using PD+ and the methods of 8.4. As you can see, this is far easier. After reading 8.4, you'll see that this is far clearer too!

Premise 1 (^x)(Ax>~Bx)
1 IM 2 (^x)(~Ax v ~Bx)
2 DM 3 (^x)~(Ax&Bx)
3 QN 4 ~(%x)(Ax&Bx)